
Scrum and CMMI – Going from Good to Great

Are you ready-ready to be done-done?

Carsten Ruseng Jakobsen

Systematic Software Engineering A/S

Aarhus, Denmark

crj@systematic.dk

Jeff Sutherland, Ph.D.

Scrum Training Institute

Boston, MA, USA

jeff@scruminc.com

Abstract—Projects combining agile methods with CMMI

combine adaptability with predictability to better serve large

customer needs. The introduction of Scrum at Systematic, a

CMMI Level 5 company, doubled productivity and cut defects

by 40% compared to waterfall projects in 2006 by focusing on

early testing and time to fix builds. Systematic institutionalized

Scrum across all projects and used data driven tools like story

process efficiency to surface Product Backlog impediments.

This allowed them to systematically develop a strategy for a

second doubling in productivity. Two teams have achieved a

sustainable quadrupling of productivity compared to waterfall

projects. We discuss here the strategy to bring the entire

company to that level. Our experiences shows that Scrum and

CMMI together bring a more powerful combination of

adaptability and predictability than either one alone and

suggest how other companies can combine them to achieve

Toyota level performance – 4 times the productivity and 12

times the quality of waterfall teams.

Keywords: CMMI; Flow; Lean; measures; product owner;

Scrum

I. INTRODUCTION

While monitoring the Scrum implementation in several
projects in Systematic, significant better Scrum was observed
in two projects. An analysis of these projects highlighted the
importance of a proper balance between activities delivering
a sprint and activities preparing or maintaining the product
backlog.

Scrum is an iterative (empirical) development model,
where it is anticipated that planning is an on-going activity
concurrent to the development activities. Therefore in
general Scrum can be considered to execute two processes at
the same time: “Execute and Deliver Sprints” and “Prepare
Product Backlog”. As a team becomes better and better to
“Execute and Deliver Sprints” process their velocity
increases, and imposes a similar need for increased speed of
the “Prepare product Backlog” process.

Execute & Deliver Sprints

Prepare Product Backlog

Setup Close out

Figure 1 Scrum Process Overview

This paper shows how Systematic used both these
processes to turn a good Scrum into a great scrum. We show
specific techniques and measures used to drive this change.

II. GOING FROM GOOD TO GREAT

A. The company

Systematic was established in 1985 and employs more
than 500 people worldwide with offices in Denmark,
Finland, USA and the UK. It is an independent software and
systems company focusing on complex and critical IT
solutions within information and communication systems.
Often these systems are mission critical with high demands
on reliability, safety, accuracy and usability.

Customers are typically professional IT-departments in
public institutions and large companies with longstanding
experience in acquiring complex software and systems.
Solutions developed by Systematic are used by tens of
thousands of people in the defense, healthcare,
manufacturing, and service industries. Systematic was
appraised 11 November 2005 using the SCAMPI method
and found to be CMMI level 5 compliant.

During 2006 Systematic adopted Scrum and a story
based early testing approach to software development and
achieved significant positive results that were reported
previously [1]. This work also showed how Scrum fit
together with other CMMI driven processes, and these
experiences were reported elsewhere [2].

B. Adoption of Scrum in Systematic

Scrum was institutionalized at Systematic over a period
of approximately six months. The first Scrum pilots ended
June 2006, and by the end of 2006 most projects had adopted
Scrum. During this period Jeff Sutherland also visited
Systematic for a management seminar, and to train the first
32 Scrum Masters.

C. Improving the Scrum process

From a CMMI perspective Scrum is one process out of a
set of processes used to execute a project. In a CMMI
context all processes for development are monitored for
effectiveness and efficiency. Therefore measures were also
established on the Scrum process.

The choice of measures were inspired from Lean [3] and
from the objective to establish a stable flow of work.

2009 Agile Conference

978-0-7695-3768-9/09 $25.00 © 2009 IEEE

DOI 10.1109/AGILE.2009.31

333

 We wanted a measure to help establish focus on a “Stop
the line” mindset to defects, to ensure defects are addressed
immediately after they are identified. We also wanted
insight into the flow of story implementation – that is, how
much waiting time is incurred when a story is implemented
(process efficiency of a story)

These considerations led to a number of measures where
the most important are:

1) Fix time after a failed builds – are problems
proactively handled?

2) Flow in implementation of story – is a story
implemented without breaks in calendar time and context
shift to implementation of other stories?

These measures were introduced by the start of 2007 in
one business unit. In order to support the measure of fix-
time, a standard build-server infrastructure was established
for all projects. Data from build servers are automatically
collected and stored in a shared database. Excel sheets were
established to automatically collect data from this database
and present the data in statistical control charts.

The measures for flow are supported by a standard
checklist for implementing stories used by all developers at
Systematic.

Projects in this business unit added the following
objectives to their projects:

a) Reduce average fix-time after failed build to less
than a working day

b) Increase flow of implementation of story to greater
than 60%

None of the projects met these two objectives initially,
but were committed to continually improve towards the
objectives. In August 2008 the productivity of two of these
projects were compared to other projects in Systematic and
shows their productivity to be 140% and 360% better than
the average.

The two projects participated in piloting of the use of
cosmic function points (CFP) as a measure for size [4].
Because the pilot of CFP is started in Q1 2008, this measure
may include some uncertainty due to application of a new
measure, and hence the numbers are considered less
confident than other measures.

On the other hand these numbers were consistent with
the management team subjective observations that these
projects showed hyper productive teams. Based on this
indication of high performance, it was decided to interview
and analyze the projects, to identify reasons for their
success.

An analysis and interview with these projects showed
that they had:

a) Already a good Scrum implementation, which was
partly driven by focus on fix-time for failed builds, and
supported with a good infrastructure for building and testing

b) Focus on ensuring that work loaded into a sprint is
truly ready, which was partly driven by focus on the flow of
story implementation

c) A clear understanding of how the product owner
activities were performed by who and when

One of the projects was a fixed-price fixed-scope
contract and the other was a time and material contract.

The two projects shows a “fix-time after failed build” to
be in statistical control with an average fix-time of 1,9 hour
and a maximal fix-time of 7 hours and had improved “flow
of implementation of story” from 32% in start of 2008 to
59% by the end of 2008.

III. DATA DRIVEN DETECTION OF IMPEDIMENTS

The two projects used these measures to systematically
identify impediments to meet the overall objective to be able
to deliver high quality working code to the customer every
month. Both measures are established using the disciplines
from CMMI and analyzed using statistical process control
techniques. These techniques help us to understand the
natural variation in the measures, and thereby helps to focus
on the largest or most special causes of variation [5]. By
addressing these causes systematically the projects achieved
the capability to perform complete test and release within 2
calendar days of each one month sprint.

The causes were addressed and resolved with an attitude
based on Lean and agile values, where management in a
respectful way supported the projects by eliminating
impediments. The focus was on the system as a whole, and
how to improve it based on the insight achieved through the
measures. How this was done is illustrated with “Time to fix
a failed build” in the next section.

A. Time to fix a failed build

The main reason to measure how long it takes from a
build failure on the shared build server until the next
succeeding build has to do with speed and quality. If a defect
or a problem is not addressed immediately after it is
identified, rework will accumulate and it will be difficult to
deliver a sprint with high quality and maintain a high
velocity. Systematic introduced a story implementation
checklist in 2006 in order to ensure an early testing mindset,
and these experiences were reported in [1]. This checklist
facilitates an individual focus, whereas the measure on time
to fix a broken build provides the project team with a
product/project level measure and focus.

These two projects focused very early on reducing the
calendar time spent on test of the sprint delivery and reduced
systematically the time for sprint test to 1-2 calendar days.
The test of the sprint delivery can only be completed in this
short time if defects are fixed as soon as they are surfaced.
The experience from these projects is that it is a matter of
what mindset you establish to remove defects. A Lean
mindset suggests that you address a defect immediately after
it is identified as opposed to a mindset where defects are
stored to be fixed later.

The measure “Fix time after failed build” is the number
of working hours from the time a defect is identified on the
shared build server until that defect is fixed and the shared
build is successful. Applying this measure on the projects
combined with an objective that the fix-time should be at
most one working day helped to build the Lean mindset of
fixing a defect immediately.

In practice the measure is supported by an environment
where the build-servers on a project automatically log the
status of a build to a shared database. Feedback to the project

334

team on build status is handled immediately with
CruiseControl. Accumulated data for all projects are also
shown on a computer screen next to the coffee machine.

Periodically the data are collected by management and
analyzed for statistical process control and included in the
monthly project review with the project manager.

The measure helped establish focus on what the
impediments are, by addressing special causes of variation,
that is fix times for broken builds that exceeds natural
variation. Insight into the natural variation was established
through the use of statistical process control techniques, as
described in [5].

The figure below shows the fix-time for failed builds on
one of the projects with an average fix-time of 1,6 hours and
an upper control limit on 7 hours.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

Fix-time after failed build for Finance (15-09-08 - 15-12-08)
Fix-time (X)

UCL-X

LCL-X

CL-X

Figure 2 Time to fix a failed build

The graph, shows one data point exceeding the control

limit with a fix-time of 7,5 hours. For each data point
exceeding the upper control line it is asked whether there is a
special cause, causing that particular fix of a broken build to
take longer time. It is judged whether the cause is special and
could be removed, or whether the cause should have been
anticipated.

How the cause is categorized is not the most important
part here. What really matters, is that these data points are
systematically addressed and help to surface impediments
and reflections on how to eliminate these impediments.

Some outliers surfaced different impediments like:
1) The reason for the failed build is related to a special

competence. The team member who possesses this
competence the best is out of office for two days, and we
will let him fix the defect when he is back in office

2) The disk on the build server ran full, and caused
unanticipated rework

3) Misunderstandings to how the test environment was
setup

4) A commercial off the shelf (COTS) product failed
These impediments were addressed by the project or the

program management above the project. In the first case, it
was re-evaluated how many team members to train in this
special competence. In the second case the general
configuration of build servers shared by all projects, were
reevaluated for disk capacity requirements. In the third
example training in the project’s infrastructure was re-
emphazised.

The general experience is that the outliers are often
caused by issues, that if not addressed will cause
impediments for future sprints, and a measure like “fix-time
for failed build”, will help to ensure that these impediments
are identified and resolved.

IV. PROCESS IMPROVEMENT

As the two projects improved and became better at
implementing sprints they surfaced the problem that work
prioritized for upcoming sprints was not sufficiently
prepared in a timely manner. In Systematic the work is
decomposed from requirements in the contract to a set of
features. Each feature is decomposed into one or more stories
that will deliver customer value. Stories are allocated to a
sprint and then implemented and delivered to the customer.

It was evident that when unprepared work was allocated
to sprints, it incurred unanticipated waiting time and context
shifts in the sprint. From a Lean perspective, we want to
eliminate the waste associated with context shift or waiting.
Therefore we strive to ensure that when work is started on a
story, then it is implemented without any interruption or
waiting time.

Therefore the team started to reject scope that was not
properly prepared and analyzed how they could improve
their process to ensure a good balance between the time
spent on preparing future work and the time spent on
implementing current sprint. The project tried to achieve a
continuous flow of implementation of features and stories.
When the projects were looked at in August 2008, it
appeared that the projects had achieved a fairly good flow.

A. Are you ready-ready to be done-done?

The two projects had focused on the flow measure
through 2008, and they understood that in order to establish a
good flow within sprints, the product backlog must be
maintained continuously and concurrent to delivering of
sprints.

The difficult part for these projects was that the tasks
involved in maintaining the product backlog required
participation from key people involved in delivering the
sprint.

The projects established their own way of ensuring that
the product backlog was maintained, and ensured that people
were allocated to support both “Preparing Product Backlog”
and “Execute and Deliver Sprint” activities.

Both projects had experienced how their increased
velocity demanded similar increased focus on preparing
work on the product backlog to be ready for upcoming
sprints. When the projects were asked how the high
performance in their projects could be transferred to other
projects, they suggested the following check-list to
consolidate and support the activities to prepare work on the
product backlog.

335

Figure 3 Feature ready-ready check list

 Systematic already had good experiences from using a

story-completion checklist to ensure that a story is done-
done. The idea was to provide the product owner with a
similar feature-ready-for-implementation checklist.

This checklist should ensure that work on the product
backlog was properly and timely prepared for
implementation in a sprint and make it visible if work
allocated to a sprint was not prepared sufficiently.

The projects observed that the existing process
descriptions they had followed already described how to
prepare work on the product backlog. What was needed to
help other projects was a distillate of the process, formed as a
checklist.

A draft checklist was established by November 2008, and
is now being piloted. At the time of writing, the checklist has
been piloted for a small number of features, but the feedback
from the projects has been very positive.

So far the main conclusions and results are:

• The use of the checklist gave appropriate focus on
timely execution of preparation activities for work in
future sprints.

• Due to timely execution of activities, it became
easier to conduct estimation workshops with a broad
representation of the team well ahead of Sprint
Planning. As a result the Sprint Planning meetings
are now much more efficient, because the team
knows what the features and stories are about.

• Planning Poker was integrated as part of the
estimation workshop, and this has proven to be an

efficient way of establishing consensus on scope and
estimate of stories.

Even though the projects achieved high performance
without the checklist, they found that the introduction of the
feature-ready-for-implementation checklist consolidated the
performance of the team. Inspired from the common use of
the term done-done to express that a story is fully completed,
Systematic introduced the term ready-ready, to express that
work from the Product Backlog has been sufficiently
elaborated to be allocated to a sprint for implementation.

The Product Owner is asked “Are you ready-ready” and
the Team is asked “are you done-done” – or in short to all
“Are you ready-ready to be done-done”. When your project
is ready-ready to be done-done you can deliver value in high
velocity. Both ready-ready and done-done are supported
with a checklist used by Product Owner and developer
respectively.

Value Velocity

R

E
A

D

Y

D

O
N

E

SPRINT

I
M
P
E

D

I

M
E

N
T

S

Daily
Scrum

Story

CHK

Feature

CHK

Figure 4 Scrum flow of work

B. Story Process Efficiency

The effect of ensuring that the product backlog is
continuously maintained, and thereby work is properly
prepared before it is allocated to sprints is evident when the
measure of story implementation is analyzed during this
period.

Assume a story is estimated to be 3 workdays of effort.
However for various reasons it takes 9 workdays to
implement the story. The flow of this story implementation
is then defined as 3 days calendar time of work implemented
over 9 calendar days, a flow of 3/9 or 33% and was
measured for all stories.

When we started measuring flow it was around 30%,
from 2007 to 2008 it increased to 59% for Q4 2008. Efficient
flow eliminates the waste associated with context shifts and
handovers. In addition the team members find it more
satisfying that work initiated in a sprint is sufficiently
clarified to allow for a smooth implementation during the
sprint.

336

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

140,00%

90 84 87 89 104 100 95 105 101 114 116 2 6 120 121 119 14 27 35 39 43 49 52 57 60 63 72 77 79 148 142 153

Sample ID in Data sheet

Flow for stories in IS 01/01 to 31/12 for Finance
Flow
Avg flow
UCL
LCL
Linear (Flow)

Figure 5 Flow of implementation of Story

V. RESULTS

Since 2005 Lean has been used as the primary tool to
improve the CMMI and Scrum way that Systematic works.
Inspired from Lean and CMMI, the projects were measured
on fix-time for failed build and flow of story-
implementation.

The measures were analyzed with techniques for
statistical process control, which provides an insight into
natural variation of the project performance. This insight was
used to address special causes of variation, and
systematically eliminate the reasons behind them.
Addressing outliers systematically shows directly in the
measures with an average of fix-time of failed builds in 1.9
hours and an increased flow of story implementation of 59%.
The indirect consequence, is elimination of wasting time
related to context shifting, and there is a strong indication
that the productivity of the two projects are significant better
than the average of other projects in Systematic.

A prerequisite that contributed significantly to these
results is that these projects established a clear understanding
of how the product owner work was organized within the
project.

VI. CONCLUSION

Using CMMI and Scrum together results in significantly
improved performance while maintaining CMMI
compliance. Scrum reduces every category of work (defects,
rework, total work required, and process overhead) by
almost 50%. We now have a clearly defined strategy to
reduce all categories of work by 75% and have achieved that
goal with a small number of teams. That success needs to be
institutionalized in the company.

A lean culture with a disciplined approach, skilled
people, and good leadership can systematically improve
Agile velocity and quality using proven CMMI 5 level
techniques of data driven assessment and organizational self-
tuning. Systems can be measured and data magnifies
learning. Careful attention must be paid to the human
dimension because poor use of data will destroy
productivity.

We have not completed our journey towards improved
performance. The next phase will focus carefully on cross-
functional team interactions and dynamics. Some Scrum
teams have achieved 8 times waterfall performance using
Agile organizational patterns implemented at the world’s
best companies. The authors are currently participating in a
patterns research project involving many Scrum companies

and the results of this work could take Systematic from very
good to a great CMMI Level 5 Scrum.

VII. REFERENCES

[1] J. Sutherland, C. Jacobson, and K. Johnson, "Scrum and CMMI Level

5: A Magic Potion for Code Warriors!," in Agile 2007, Washington,
D.C., 2007.

[2] C. R. jakobsen and K. A. Johnson, "Mature Agile - with a
twist of CMMI," in Agile 2008, Toronto, 2008.

[3] T. Ohno, Toyota Production System: Beyond Large Scale
Production: Productivity Press, 1988.

[4] COSMIC, "The COSMIC Functional Size Measurement
Method Version 3.0.1," Common Software Measurement
International Consortium2009.

[5] M. K. Kulpa and K. A. Johnson, Interpreting the CMMI: A
Process Improvement Approach. Boca Raton: Auerbach
Publications, 2003.

337

